
Software Verification of Orion Cockpit Displays

M.A. Rafe Biswas, Samuel Garcia and Matthew Prado

Houston Engineering Center

University of Texas at Tyler

Houston, USA

mbiswas@uttyler.edu

Sadad Hossain, Matthew Souris, and Lee Morin

Rapid Prototyping Laboratory

NASA Johnson Space Center

Houston, USA

Abstract—NASA’s latest spacecraft Orion is in the

development process of taking humans deeper into space. Orion

is equipped with three main displays to monitor and control the

spacecraft. To ensure the software behind the glass displays

operates without faults, rigorous testing is needed. To conduct

such testing, the Rapid Prototyping Lab at NASA’s Johnson

Space Center along with the University of Texas at Tyler

employed a software verification tool, EggPlant Functional by

TestPlant. It is an image based test automation tool that allows

users to create scripts to verify the functionality within a

program. A set of edge key framework and Common EggPlant

Functions were developed to enable creation of scripts in an

efficient fashion. This framework standardized the way to code

and to simulate user inputs in the verification process. Moreover,

the Common EggPlant Functions can be used repeatedly in

verification of different displays.

Index Terms— Software Engineering, Verification, Computer

Programming, Image Recognition

I. INTRODUCTION

One of NASA's current objectives is advancing the state of

spaceflight to Mars. For several years, NASA and its

collaborators have sent orbiters, landers and rovers to learn

more about the planet to lead the way for possible human

exploration and habitation [1]. The knowledge gathered from

the data collected so far has shown that a manned mission to

Mars is feasible. Thus, NASA’s Orion spacecraft is being

designed and built to take humans farther into deep space.

Orion is planned to be the exploration vehicle to take a human

crew to space as well as to provide emergency abort capability,

sustain the crew during the travel, and ensure safe re-entry

from deep space due to extremely high return velocities [1, 2].

Although mission control will be monitoring the spaceflight

and providing instructions to the crew, they will need a way to

monitor the vehicle status and to control the vehicle

independently, especially in emergency situations including

loss of communication. The latest spacecraft is equipped with

three main digital cockpit displays, shown in Figure 1, that

serve as the main interfacing component to monitor and control

[3, 4]. In order to ensure that the software operates reliably

and consistently, rigorous regression testing must be carried

out. NASA’s Rapid Prototyping Lab (RPL) at the Johnson

Space Center (JSC) is at the forefront of building and testing

the flight software for the cockpit displays [5].

The RPL has a generic display format software engine to

render a mock-up of the Orion cockpit displays from external

files. An example of the display software is presented in Figure

2 [5]. These files describe the selected features, positions, and

properties of all on-screen elements. The display formats can

be created or modified without changing or recompiling the

software engine. The repetitive use of display functionality on

different displays does not require the code to be repeated in

each display format, but rather reuse of the code in the engine

can be specified with a few symbols in the external definition

file [6]. The RPL, in collaboration with the University of Texas

at Tyler, has been testing the different functionalities of this

cockpit display software using a selected software verification

tool called Eggplant Functional.

II. SOFTWARE VERIFICATION TOOL

EggPlant Functional was chosen by the RPL as one of its

software verification tools to test their cockpit display

simulation software [7]. The advantage of EggPlant Functional

is that it can be automated to run tests of simulated user

interactions on the system under test (SUT) without actual

Human/Physical actions. To do this, EggPlant Functional

connects remotely to the SUT and runs programs known as

scripts which are a series of commands within a file that is

capable of being executed without being compiled. These

scripts are written in SenseTalk, a proprietary language built by

TestPlant [8]. The scripts emulate user interactions on the

system such as mouse clicks and keyboard entries. Advanced

image recognition technology in EggPlant Functional allows

testers the ability to create decision structures that can mimic

complex user behaviors. Using the built-in image recognition

functions, EggPlant can be scripted to react as the user would

to certain events in the software, or to verify if the SUT is

acting in accordance with expected results. Test results can be

logged into external log file outputs and images of the SUT can

be captured during the testing process. Applications are tested

from the user's point of view, which provides for a higher

fidelity test.

The proprietary scripting language SenseTalk is designed to

mimic natural human language, which simplifies the writing of

scripts. SenseTalk follows the structure for high-level

languages that are closer to human languages and further from

machine languages. Listing 1 is a simple script to test to see

whether the NASA Logo can be found on the NASA website.

https://ntrs.nasa.gov/search.jsp?R=20170007938 2018-07-23T11:31:30+00:00Z

Figure 1. Mock-up of glass cockpit displays [3].

Figure 2. Example of the three Orion cockpit displays [5].

Listing 1. Script to find NASA logo

Click(Image:"Internet_Browser_Icon", waitfor:5)

Click(Image:"Internet_Address_Bar", waitfor:5)

TypeText "www.nasa.gov"

Wait(5) // Wait for website to load

If ImageFound(Image:"NASA_Logo", waitfor:5) then

LogSuccess "Found NASA Logo!"

Else

LogError "NASA Logo not found."

End if

First, the script will search the desktop of the SUT for the

internet browser icon image, and click on that image to launch

the browser. Next, the script will search for the image of the

address bar and make the address bar active with a mouse

click. Then, using the TypeText command to send keyboard

entries to the SUT, the script will type out the NASA website

address into the address bar. The script will wait 5 seconds for

the website to load. Depending on whether or not the NASA

logo can be found by EggPlant Functional, the script will

report either a success or a failure in its log output file.

EggPlant Functional can be automated to perform several

iterations of testing and verification. The resultant reduction in

time due to scripted automation is critical to the RPL’s quick

turnaround time. The iterative testing also allows the RPL to

stress-test its software systems to ensure functionality in the

event of a change or update to the software code [9].

In addition to the SenseTalk scripting in EggPlant, the

Python programming language was utilized in order to

automate the writing of SenseTalk scripts. Python has powerful

file creation and text parsing capabilities that were extensively

used in these testing processes. By creating Python scripts, the

team was able to parse configuration files for pertinent data and

automate the creation of SenseTalk scripts as text files and the

directories for these scripts, which are known as EggPlant

suites. Since many SenseTalk scripts were repetitive in nature

and required specific data strings from text-heavy files, coding

these scripts by hand would have been very time-intensive.

Automating the creation of these EggPlant suites and scripts

represented yet another means of reducing time and increasing

efficiency.

III. METHODOLOGY

The RPL has developed a software simulation program of

the Orion cockpit displays known as “RPL Sim”. It can

simulate the function of the cockpit displays completely in

software. This program can be loaded with insert files that

determine the display unit’s telemetry, so the software can

simulate various scenarios during the Orion missions such as

ascent and descent. RPL Sim can also launch a Graphical user

interface (GUI) called RPL Graphics, the visual representation

of the actual display unit hardware. The display units can be

interacted with by either entering keystrokes or clicking on-

screen elements of RPL Graphics.

RPL Graphics simulates the functions of the actual cockpit

hardware in its entirety, which includes the various displays

available to the operators. The displays can show relevant

information to the crew, such as data pertaining to vehicle

systems, propulsion systems, and electrical systems. One

navigates between these displays by using the edge keys,

which are the grey rectangular buttons in Figure 3, surrounding

the Display Unit (DU). These displays can also be used to

change settings to the aforementioned systems and to also

display electronic procedures (eProc). The electronic procedure

system “assists crew members by highlighting vehicle states on

a display and cueing up appropriate displays, pop-ups, and

commands” [10]. In addition, eProc is “linked to fault

messages, so that crew members can quickly access procedures

to any message that appears on the fault summary or log

displays” [10]. Thus, eProc allows the crew to rapidly assess an

emergency scenario and enact the proper steps to rectify the

situation. The advantage of eProc is that it supplants hardcopy

manuals, resulting in a reduction of launch weight by the order

of hundreds of pounds as no printed material needs to be

brought onboard. A crewmember can access the eProc display

to pull up an onscreen operations manual that can walk the user

through the various stages of the mission.

There are three main forms of crew interaction with the

display: a cursor control device (CCD), a cursor knob (also

known as a “twizzle”), or edge key presses that traverse

through selectable elements on the screen. Pressing edge keys

is the most direct method of control, and can be performed in

RPL Graphics either by clicking the image of the edge key or

by entering in a pre-programmed keyboard combination. The

CCD is to the pilot’s left and complements the joystick. On the

CCD are several buttons, a bidirectional rocker switch, and “a

four-way ‘caged’ castle switch on the CCD…designed to travel

only to controllable elements toward decreasing erroneous

cursor movements” [11]. The switches allow the user to

transfer between the various displays and popups.

Popups are the menus that appear onscreen when certain

selections are made within the displays. For example, when the

user is in the Main Propulsion System (MPS) display, a popup

appears when the edge key is selected for “Engine Shutdown”.

This popup has one enumeration, or choice, which allows the

user to shutdown a given engine. There are seven main classes

of popups depending on the enumerations or output types.

When one of the popup types is selected, a text string known as

an MSID will be sent to the RPL Sim window. When an

enumeration is selected by the user, a number value known as a

CMD Value is sent to the RPL Sim window. By checking to

see if these MSID and CMD values match up with the default

value, we can test to see if the popups and enumerations are

working properly.

The main difference between the Display Popup script and

a Primary Flight Display (PFD) script is that the PFD script is

iterative. For example, the PFD EggPlant script involves

incrementing a number on the display, such as a degree of

rotation of the spacecraft's position, and verifying the display is

working nominally. The Display Popup script involves

automating the same edge key presses or cursor knob/twizzle

twists needed to produce a specific display configuration.

These commands are hardly iterative, and therefore the code

automating the edge key strokes or twizzle twists must be hard

coded outright. In simple terms, the script automates these

simulated user inputs to obtain a specific popup in order to

verify its functionality.

IV. RESULTS AND DISCUSSION

Edge key usage was automated for the three display units.

The three display units are DU1, DU2 and DU3. This

automation assisted in the testing of the RPL display unit

simulator. The edge keys were invoked using assigned edge

key Keystroke identifiers, as shown in Figure 3. This allowed

edge keys to be used without actually physically invoking

them, and allowed for reusable code that does not rely on edge

key image location recognition. A hard coded framework was

written to save time from rewriting the same code over and

over. This framework can then be called into any new

EggPlant script via keyword for Sensetalk “put” and assigning

it a path and variable name. This script has the ability to

enumerate through displays using edge keys via an assigned

keystroke identifier per edge key, with no physical actuating of

edge keys needed.

Each display unit was broken down into sections as seen

below. The six main sections are upper left, upper right, lower

left, lower right, top navigation, and bottom navigation. Figure

4 shows also miscellaneous navigation buttons that are

included in the framework. These include enter, cancel, and

twizzle.

The framework scripts contain variables that represent

different keystroke combinations, each of which correspond to

an onscreen function like actuating an edge key or turning the

twizzle knob left.

Figure 3. Edge keys of a display unit template

Figure 4. Navigation buttons of a display unit template

Figure 5 is a chart of the upper left section and the edge key

variable names. There is a separate variable for each edge

key’s click and release command as illustrated by each DU

column.

Prebuilt functions were also added to navigate to specific

displays quickly. Figure 6 is the list of prebuilt functions that

have been made.

To be able to use the framework in a script, it must be

called into the script at the beginning of the script. Then, it is

possible to start calling on it to press edge keys. Listing 2 is a

sample script that calls in the framework, navigates to the MPS

Display, and clicks and releases two edge key buttons.

Figure 5. Assigned edge key variable names

Figure 6. List of Prebuilt functions

Listing 2. Calls in framework

put “C:\Users\user\Desktop\DisplayUnit_KeyStroke

_Framework.suite\Scripts\DU1” into DU1

//Navigates to MPS Display

put DU1.Flt_MPS

//Click and release 2 edge key buttons

put DU1.URCR1

put DU2.LRCR3

After the framework for the DU edge keys and display calls

was written and verified, it was time to write the scripts to test

the MPS Display. The MPS Display has four sections that

correspond to the four engines of the propulsion system that are

active during ascent. Each of the four engines has two options,

Engine Shutdown (“Eng S/D”) and Redline Enable/Inhibit

(“Redline Ena/Inh”). Eng S/D is a “NORMAL” type popup

that sends only one enumeration to shut down the engine.

Redline Ena/Inh is a “SEND SINGLE” type popup with a total

of two enumerations. The user can either Enable or Inhibit the

Redline warning of a given engine.

A script called “Common EggPlant Functions” was written

that acted much like our edge key framework. Common

Eggplant Functions contained several methods that were used

repeatedly by our verification scripts. There were methods for

selecting the popup, sending the right enumeration, and

capturing the MSID and CMD value after the enumeration was

sent. These methods made up the backbone of our MPS

Display verification script.

Our MPS Display test script worked as follows. The Edge

Key Framework and Common EggPlant Functions were called

at the beginning of the script. A display call was then made for

the MPS Display. The script iterated through all the popups

and enumerations of the MPS Display for each engine in

numerical order. The MSIDs and CMD values were captured,

output to a text file, and compared to the expected values.

Afterwards, the user can access the log files and determine if

the test was a success or a failure, depending on whether the

captured values were the same as the expected values.

The MPS Display test script was set to run numerous times

by EggPlant Functional. Successive testing proved that the

scripts were working and were able to obtain the corresponding

values consistently

V. CONCLUSION AND FUTURE WORK

EggPlant Functional and SenseTalk proved to be highly

useful tools for automating the testing of the Orion cockpit

display simulators. The Edge Key framework and Common

EggPlant Function scripts also enabled us to create scripts in a

more efficient manner. One of the main goals in the testing

process was to write modular, re-usable code that can be

applied to the different displays, popup types, and

enumerations that one encounters. The framework standardizes

the way in which we code and simulate user inputs, and the

Common Eggplant Functions can be used repeatedly in tests of

other displays.

Moving forward, we hope to use the tools that we have

created to test the other displays and popup types in RPL Sim.

We also want to run repetitive tests to prove that our scripts are

functional and obtaining the correct results. Moreover, this

iterative testing will validate reliability and consistency of the

Orion cockpit display simulation software performance. The

final step will involve a formal verification process to be

performed independently as part of an overall quality assurance

process before the Orion spacecraft takes flight.

ACKNOWLEDGMENT

We would like to thank University of Texas at Tyler Office

of Research and Technology Transfer. We would also like to

acknowledge the efforts of Steven Auzenne, Jonathan Vidana,

Jeffrey Fox and Patrick Henry within the RPL.

REFERENCES

[1] NASA, "Journey to Mars," 30 September 2016. [Online].

Available:

https://www.nasa.gov/topics/journeytomars/index.html.

[Accessed 26 April 2017].

[2] K. L. Holden, J. L. Boyer, N. Ezer, K. Holubec, A. Sándor and

J.-P. Stephens, "Human Factors in space vehicle design," Acta

Astronautica, vol. 92, no. 1, p. 110–118, 2013.

[3] C. Murray, "Inside NASA’s glass Orion cockpit," 3 August

2015. [Online]. Available:

https://spaceflightuk.com/2015/08/03/inside-nasas-glass-orion-

cockpit/. [Accessed 29 April 2017].

[4] NASA, "Orion Simulations Help Engineers Evaluate Mission

Operations for Crew," 22 February 2016. [Online]. Available:

https://www.nasa.gov/feature/orion-simulations-help-engineers-

evaluate-mission-operations-for-crew. [Accessed 29 April

2017]..

[5] NASA, "Orion: Cockpit," 1 December 2014. [Online].

Available: https://archive.org/details/Orion_Cockpit. [Accessed

26 April 2017].

[6] NASA JSC, "Rapid Prototyping Lab (RPL) Generic Display

Engine," 1 October 2014. [Online]. Available:

http://www.techbriefs.com/component/content/article/ntb/tech-

briefs/information-sciences/20738. [Accessed 26 April 2017].

[7] Testplant, "eggPlant Functional," June 2013. [Online].

Available: https://www.testplant.com/eggplant/testing-

tools/eggplant-developer/. [Accessed 29 April 2017].

[8] Testplant, "About SenseTalk," [Online]. Available:

http://docs.testplant.com/?q=about-sensetalk. [Accessed 29

April 2017].

[9] S. Auzenne, M. Dumantay, J. Vidana, M. Issa, M. A. R. Biswas,

M. Souris and L. Morin, "Automated Testing of Orion Cockpit

Displays using EggPlant Functional and Python Programming,"

in ASEE Gulf-Southwest Section Anuual Conference, Dallas,

2017.

[10] NASA, "eProc Electronic Procedure System for Spacecraft

Glass Cockpits (eProc System)," [Online]. Available:

https://software.nasa.gov/software/MSC-25186-1. [Accessed 26

April 2017].

[11] M. C. Dorneich, J. A. Lancaster, C. J. Hamblin, O. Olofinboba

and R. E. Demers, "Deriving Cursor Control Device

Expectations for the Orion Crew Exploration Vehicle," in

Human Factors and Ergonomics Society Annual Meeting, San

Francisco, 2010.

[12] M. Dumantay, S. Auzenne, J. Vidana, M. Issa, M. A. R. Biswas,

M. Souris and L. Morin, "Verification of Orion’s Cockpit

Displays Using EggPlant and Python," in IEEE DUAL

CONFERENCE Of INNOVATION and AUTOMATION,

Houston, 2016.

